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Abstract
Motivation: Branch lengths and topology of a species tree are essential in most downstream analyses, including estimation of diversification
dates, characterization of selection, understanding adaptation, and comparative genomics. Modern phylogenomic analyses often use methods
that account for the heterogeneity of evolutionary histories across the genome due to processes such as incomplete lineage sorting. However,
these methods typically do not generate branch lengths in units that are usable by downstream applications, forcing phylogenomic analyses to
resort to alternative shortcuts such as estimating branch lengths by concatenating gene alignments into a supermatrix. Yet, concatenation and
other available approaches for estimating branch lengths fail to address heterogeneity across the genome.

Results: In this article, we derive expected values of gene tree branch lengths in substitution units under an extension of the multispecies coa-
lescent (MSC) model that allows substitutions with varying rates across the species tree. We present CASTLES, a new technique for estimating
branch lengths on the species tree from estimated gene trees that uses these expected values, and our study shows that CASTLES improves
on the most accurate prior methods with respect to both speed and accuracy.

Availability and implementation: CASTLES is available at https://github.com/ytabatabaee/CASTLES.

1 Introduction

Species trees, both their topologies and their branch lengths, are
necessary for downstream biological research. For example,
branch lengths are required for comparative genomics (Hahn
et al. 2005) and comparative trait analysis (Felsenstein 1985;
O’Meara 2012), phylodynamics of disease transmission (Volz
et al. 2013), species delimitation (Rannala 2015), measuring
phylogenetic diversity (Faith 2002; Lozupone and Knight 2005),
and detecting and characterizing selection (Kosakovsky Pond
and Frost 2005). Many of these analyses amount to studying
changes in the rate of evolution across the tree (Lanfear et al.
2010). Most statistical methods designed for these applications
rely on branch lengths measured in the unit of the expected
number of substitutions per site (SU), readily available from tree
inference based on sequence data, or unit of time, or both.

The traditional approach to the estimation of species trees and
branch lengths has been concatenating gene alignments followed
by a tree-building method, such as maximum likelihood (Rokas
et al. 2003). It is now understood (Roch and Steel 2015) that this
concatenation approach can be positively misleading (i.e. con-
verge to the wrong tree as the number of genes increases) in the
face of sufficient gene tree heterogeneity across the genome due to
incomplete lineage sorting (ILS), as modeled by the multispecies
coalescent (MSC) model (Pamilo and Nei 1988). Alternative
approaches for estimating species trees have been developed that
are statistically consistent under the MSC (see Kubatko and
Knowles 2023). In particular, methods that combine a set of gene
trees to infer a species tree (referred to as “summary methods”)
are widely used because of their scalability and accuracy (and no-
tably better accuracy than concatenation when ILS is high). Well-

known examples of such methods are ASTRAL (Mirarab et al.
2014) and MP-EST (Liu et al. 2010), which are used often to ana-
lyze phylogenomic datasets. However, the branch lengths pro-
duced by summary methods are in coalescent units (CUs), and
these do not directly lead to branch lengths in substitution units.
Moreover, branch lengths in coalescent units are inferable only
for the internal branches, which further limits their utility.

At the current time, therefore, most coalescent-based analyses
estimate species trees and their branch lengths in substitution
units (SU) following a two-stage approach, where the first stage
computes the tree topology (e.g. using a summary method, such
as ASTRAL or MP-EST) and then estimates branch lengths on
the tree using a constrained concatenation analysis, such as using
a maximum likelihood method to infer branch lengths on a fixed
tree topology (e.g. Song et al. 2012). However, one major prob-
lem with this approach is that the branch length calculation step
ignores gene tree heterogeneity across the genome, leading to
criticisms of this approach in the scientific literature. For exam-
ple, Moody et al. (2022) criticized the findings by Zhu et al.
(2019) who postulated a shorter length than previously reported
separating archaea and bacteria, arguing that the use of concate-
nation for branch length estimation can lead to substantial
under-estimation in the face of high levels of horizontal gene
transfer, where gene trees have widely discordant topologies.

Another approach for SU branch length estimation on
species trees is ERaBLE (Binet et al. 2016), which uses the SU
branch lengths estimated in a set of gene trees and then solves
a weighted least-squared optimization problem to assign SU
branch lengths to the species tree. However, as with the stan-
dard concatenation approach, ERaBLE does not take hetero-
geneity in gene tree topologies due to ILS into account. When
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a strict molecular clock holds, then branch length estimation
in the species tree becomes feasible. However, it is well under-
stood that strict clock-based methods have poor accuracy for
many datasets where mutation rates change across the tree
(Bromham and Penny 2003; Kumar 2005). Hence, clock-
based approaches do not offer a viable solution.

To summarize, existing methods to compute SU branch
lengths that take discordance between gene trees due to ILS
into account, without a strict molecular clock, have not yet
been developed. And in particular, we currently lack a theo-
retical basis for inferring SU lengths for species trees that
addresses heterogeneity in gene tree topologies due to ILS, as
modeled by the MSC. This is a glaring gap that needs to be
filled.

The unsatisfactory state-of-the-art leads us to ask: How can
we estimate branch lengths on species trees that are accurate,
even in the face of high levels of ILS and that does not depend
on a strong molecular clock? We specifically seek a method
that has a strong theoretical foundation based on the MSC.
We also seek to develop a method that is sufficiently fast that
it is scalable to large genome-wide datasets with hundreds to
thousands of genes and species. Because we seek to develop
scalable methods, Bayesian co-estimation of gene trees and
species trees (topologies and branch lengths) is infeasible as
even the best of these methods are computationally intensive
on smaller datasets with about 50 species and 200 genes
(Zimmermann et al. 2014; Ogilvie et al. 2017).

Here, we propose the Coalescent-Aware Species Tree
Length Estimation in Substitution-unit (CASTLES) method.
The input to CASTLES is a rooted species tree topology and a
set of inferred gene trees with SU branch lengths, which can
have missing data, polytomies, and multiple individuals per
species. The output is the species tree furnished with SU
lengths on all branches; at the root, only the sum of the
lengths of the two root-incident branches is inferred.
CASTLES addresses gene tree heterogeneity under the MSC
and naturally occurring variation in mutation rates; thus, it
does not assume strict molecular clock. Similar to methods
like ASTRAL for species tree topology inference, we use a
quartet-based approach. We first derive the expected branch
length of gene trees that do or do not match a quartet species
tree under our model as a function of their CU length and mu-
tation rates. These derivations suggest an algorithm for esti-
mating SU branch lengths, but the approach is cumbersome
to implement. Through approximations and simplifications,
we derive a much simpler estimator that still retains non-
ultrametricity. Going beyond trees with four species in a naive

way, iterating over all
n
4

� �
quartets, would lead to the loss

of scalability. Instead, we design a sophisticated dynamic pro-
gramming algorithm to compute quantities needed by our al-
gorithm in quadratic time. We compare CASTLES to leading
alternatives using a simulation study and demonstrate its su-
perior accuracy and speed. Finally, we apply it to a biological
dataset.

2 Materials and methods

We first describe a model that generates gene trees with SU
branch lengths. We then derive the expected gene tree branch
lengths under this model for a single quartet. The resulting set
of non-linear equations can be (approximately) solved using
numerical methods, and will yield values for the model

parameters given quantities that can be measured from the
gene trees. However, solving these equations is computation-
ally intensive, involves numerical instabilities, may not pro-
duce optimal solutions and is cumbersome; therefore, here we
present simplifications that give analytical formulas for every
branch of a quartet tree. Using equations for the simplified
model, we then develop an algorithm that can handle a tree
with arbitrary size n, including a scalable (quadratic) dynamic
programming algorithm to compute averages of quartet
branch lengths across gene trees for Hðn4Þ quartets. We rele-
gate most proofs to the Supplementary Appendix.

2.1 MSC 1 Substitution model

Our model parameters include a species tree T and several
per-branch attributes (Fig. 1a). Each branch i is furnished
with a branch length si in the unit of the number of genera-
tions, a haploid effective population size Ni, and a
substitutions-per-generation rate �i. The CU length of the
branch is simply Ti ¼ si=Ni. Let li ¼ �i �Ni denote the CU
substitution rate. The SU length of the branch is
ti ¼ si � �i ¼ Ti � li; thus, setting unequal � values across the
tree branches leads to a non-ultrametric species tree. Gene
trees are first drawn under the MSC model (ignoring �i), thus
producing trees with lengths in the unit of generations. Gene
trees with SU length are generated by multiplying the length
of every infinitesimally small part of each of their branches
passing through a species tree branch i by the species tree rate
li. For example, the length of the terminal branch A in Fig. 1
is TAlA þ T1l1 þ xl2. Note that under this model, species
tree CU lengths connect indirectly to SU and time units; infer-
ring SU from CU requires li ¼ �i �Ni, inferring the number
of generations needs the population size, and inferring time
additionally needs the generation time.

2.2 Expected quartet branch lengths under the MSC

Focusing on a quartet, we now derive the expected length of
all branches as a function of the model parameters. Consider
unbalanced and balanced species trees shown in Fig. 1. In the
Supplementary Appendix, we present Supplementary
Lemmas S1–S6, which derive the expected length of each ter-
minal and internal branch in the gene trees that do or do not
match the unbalanced or balanced species trees. Note that
these expectations can be estimated in a statistically consistent
manner given true gene trees with SU branch lengths.
Combined, we derive 10 equations across the five branches,
relating the measurable expected values to the unknown
parameters. Since li and Ti only appear as ti ¼ liTi for all ter-
minal branches (i 2 fA;B;C;Dg), we have four unknown
parameters for terminal branches. With three unknown rates
(l1;l2; l3) and two unknown CU internal lengths (T1 and
T2), we have 9 unknowns in total.

This non-linear system of 10 equations and 9 unknowns
can be (approximately) solved using numerical methods to
jointly estimate all the parameters. Such an optimization ap-
proach, however, is subject to numerical instability, may be
slow, and may not give optimal solutions for this (possibly)
non-convex optimization problem. Instead of exploring that
path, we observe that by making some simplifying assump-
tions, we can compute all the branch lengths analytically.

Theorem 1 and the similar Supplementary Theorem S1
(Supplementary Appendix) for balanced trees follow from the
lemmas mentioned earlier.
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Theorem 1 (Unbalanced). For the unbalanced species tree
of Fig. 1a, let DI be the difference in the expected
internal branch length in substitution units of gene
trees with an unrooted topology matching the species
tree and those not matching the species tree. Then,

DI ¼
3ðe�T2 � e�3T2Þð1� e�T1Þðl2 � l3Þ þ 6l1ðe�T1 � 1þ T1Þ

2ð3� 2e�T1Þ
:

(1)

Similarly, let DA;DC; and DD be the difference in the
expected length of matching and non-matching gene
trees for the terminal branch leading to a cherry, the
middle terminal branch, and the root-adjacent
terminal branch, respectively.

DA ¼
4l2 � 6l1 � 3e�T2 þ e�3T2 þ 9

2
eT1�T2

� �
l2 � l3ð Þ

2 �2þ 3eT1ð Þ

þ
eT1

1

2
l2 þ l3ð Þe�3T2 þ 6l1 1� T1ð Þ � 5l2

� �

2 �2þ 3eT1ð Þ

:

(2)

DC ¼
2� e�T1ð Þ

�
ðe�3T2 þ 2Þl2 � 3e�T2 l2 � l3ð Þ

�
2 3� 2e�T1ð Þ

þ l3e�3T2 e�T1 � 4ð Þ
2 3� 2e�T1ð Þ

: (3)

DD ¼
ð1� e�T1Þð2l2 � ð3e�T2 � e�3T2Þðl2 � l3ÞÞ

2ð3� 2e�T1Þ
: (4)

We simplify the equations of Theorem 1 by computing their
limit as T2 !1 or l2 ! l3. Note that neither assumption
completely breaks non-ultrametricity assumptions because we
ignore the rate for only one branch (l2) and not the others.

2.3 Simplifications
2.3.1 Internal branch calculation

To compute t1 ¼ l1T1, we simplify Equation (1) so that it
only depends on T1 and l1, by computing its limits:

lim
T2!1

DI ¼ lim
T2!0

DI ¼ lim
l2!l3

DI ¼
3l1ðe�T1 � 1þ T1Þ

3� 2e�T1
: (5)

Replacing DI with the observed difference between mean in-
ternal branches among matching and non-matching gene trees
(DI), we get an equation with two unknowns, l1 and T1. One
way to move forward is to estimate T1 using quartet discor-
dance, as shown by Sayyari and Mirarab (2016). Then, we
can estimate l1 and thus t1 ¼ l1 � T1. However, the accuracy
of the CU estimate of T1 is known to degrade for inaccurate
gene trees (Sayyari and Mirarab 2016). Instead, we use a local
clock approximation to estimate l1 and then solve for T1. If
mutation rates of the two branches above the focal branch are
assumed the same (e.g. l2 ¼ l3), then, the expected length of
gene trees not matching the species tree is simply l2 by
Supplementary Lemma S1 (Supplementary Appendix).
Further assuming l1 ¼ l2 allows us to estimate l1 as the
mean length of the internal quartet branch among gene trees
not matching the species tree (l1 ¼ L

0
I), obtaining:

DI

L
0
I

¼ 3ðT1 þ e�T1 � 1Þ
3� 2e�T1

: (6)

The solution to this equation is:

d þW �1

3
e�d�1ð2d þ 3Þ

� �
þ 1;

where Wð:Þ is the Lambert W function and d ¼ DI=L
0
I.

Since Lambert’s function does not have a closed-form solution
(and can be imaginary), we resort to the Taylor
expansion eT1 � 1þ T1, which is a good approximation for
small T1. Using this approximation, the solution to Equation (6)
becomes:

(b)(a)

Figure 1. (a) MSC þ Substitution model. Each branch of the species tree is furnished with parameters described in the legend. As a gene tree evolves

inside the species tree, its branches inherit the substitution rates of all the species tree branches that they pass through. When mutation rates change

across species tree branches, the resulting gene tree is non-ultrametric. We match the theoretical expected values of the five branches of a gene tree

that matches or does not match the species tree (namely, LA; LB ; LC ;LD , and LI for a matching gene tree shown here) to their empirical means, computed

from gene trees. (b) Handling a tree with more than four taxa. Each focal internal branch (arrow) divides the tree into four groups, here denoted as A, B, C,

and D. To use quartet-based equations, we average branch lengths over all quartets with one leaf selected from each of A, B, C, and D (e.g. a1; b1; c1; d1).
Note that in one gene tree, some quartets around a species tree branch may contribute to matching while others contribute to non-matching average

lengths (examples shown). We compute these averages efficiently without listing all Oðn4Þ quartets using dynamic programming.
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T̂1 ¼
1

2
d þ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3dð3d þ 4Þ

q
: (7)

In our current implementation of CASTLES, we use this ap-
proximation to avoid numerical issues. When d < 0, we set
the branch length to a small value (10�6 by default).

2.3.2 Terminal branch calculation

To simplify Equation (2), we compute its limit as T2 !1

lim
T2!1

DA ¼
�6l1ðe�T1 � 1þ T1Þ � ð5� 4e�T1Þl2

6� 4e�T1
: (8)

The expected length of the terminal branch of A in non-
matching gene trees in the limit is

lim
T2!1

L0A ¼ T1l1 þ TAlA þ
5

6
l2 (9)

based on Supplementary Equation (S19) (Supplementary
Appendix). To compute tA ¼ lATA we replace the expected value
limT2!1 DA in Equation (8) with the observed mean difference DA

and replace the expected value limT2!1 L0A in Equation (9) with
the observed mean terminal branch of A among non-matching
gene trees (L

0
A). Solving for TAlA gives us an estimator of tA:

t̂A ¼ L
0
A þ

l1ðe�T1 � 1þ T1Þ þ DAð1� 2=3e�T1Þ
1� 4=5e�T1

� T1l1 :

(10)

Similarly, for branch C,

lim
T2!1

DC ¼
l2ð2� e�T1Þ
ð3� 2e�T1Þ and lim

T2!1
L0C ¼

1

3
l2 þ TClC; (11)

where the expected length of C in non-matching gene trees
(L0C) is given in Supplementary Equation (S6) in the
Supplementary Appendix. Replacing limT2!1 L0C with the ob-
served length of C in non-matching gene trees L

0
C and replac-

ing limT2!1 DC with the observed DC in Equation (11) gives
us the estimate for tC ¼ TClC:

t̂C ¼ L
0
C �

1

3
2� 1

2� e�T1

� �
DC : (12)

For D, we use a different limit:

liml2!l3
DD ¼

l2ð1� e�T1Þ
3� 2e�T1

liml2!l3
L0D ¼ l2T2 þ lDTD þ

2

3
l2

;

where the expected length of D in non-matching gene trees
(L0D) is given in Supplementary Equation (S17) in the
Supplementary Appendix. The pendant branch of D in SU in
the unrooted species tree is l2T2 þ lDTD, representing both
branches below the root. Substituting expected values DD and
L0D with observed values DD and L

0
D, we get our estimate:

t̂2 þ t̂D ¼ L
0
D �

2

3
2þ 1

1� e�T1

� �
DD : (13)

To summarize, we use Equations (10), (12), and (13) to
compute terminal branch lengths, setting the length to a small
value (10�6 by default) when results are negative.

2.4 Extending to larger trees

To extend the algorithm to more than four species, we apply
the same calculations to each branch of the species tree, one
at a time. Each internal branch of the species tree creates a
quadripartition of species (e.g. A;BjC;D in Fig. 1b). Any
quartet of species (e.g. abjcd) with a selection of one taxon
from each part of the quadripartition (a 2 A, b 2 B, c 2 C,
and d 2 D) gives us a quartet species tree where all of our pre-
vious theoretical results hold, and they all lead to identical
expected values for their corresponding gene tree quartets.
Thus, it is valid to compute the length of this species tree
branch using the quartet-based approach by simply taking the
average lengths across all quartets.

Assuming the averages are already calculated, we can use
Algorithm 1 to assign a length to each branch. The algorithm
visits the internal nodes of the tree in a post-order traversal.
For each internal node, it assigns the length of the edge above,
in addition to (some of the) adjacent terminal branches. If a
node u is the parent of a cherry, it assigns the length to both
children; otherwise, it ignores the children. If u is sister to a
leaf, it also assigns the length to the sister, using Equation
(12). When the tree has more than four taxa, almost all
branch lengths are assigned using unbalanced quartet
equations. The only exception is the root branch, which may

Algorithm 1. CASTLES algorithm. The input is a rooted
species tree s with n > 4 taxa and a set of gene trees G with
SU branch lengths, and the output is s annotated with SU
branch lengths. te denotes the length of branch e in SU.

1: procedure CASTLES(s, G)
2: La ;Lb ;Lv ; Lp ; L

0
a ;L

0
b ;L

0
v ; L

0
p for each branch 

Supplementary Algorithm S1

3: for u 2 post order traverse of internal nodes of s do

4: if u is root then

5: break

6: end if

7: p  parentðuÞ; v  siblingðuÞ; a;b  childrenðuÞ
8: if p is root then

9: if v is leaf then

10: tp!u þ tp!v  Equation ð13Þ ðterminal DÞ
11: else

12: tp!u þ tp!v  Equation ðS39Þ ðinternal bal:Þ
13: end if

14: else

15: tp!u  Equation ð7Þ ðinternal unbal:Þ
16: if v is leaf then

17: tp!v  Equation ð12Þ ðterminal CÞ
18: end if

19: for w 2 childrenðuÞ do

20: if w is leaf and tu!w is null then

21: tu!w  Equation ð10Þ ðterminal AÞ
22: end if

23: end for

24: end if

25: end for

26: end procedure
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need to be set based on the balanced quartet equations
(Supplementary Fig. S5).

The most challenging part of this algorithm, then, is com-
puting mean length across Oðn4Þ quartets in a scalable fash-
ion. These quantities can be computed using a sophisticated
dynamic programming algorithm, which borrows many ideas
from weighted ASTRAL (Zhang and Mirarab 2022). The
running time of the algorithm is Oðn2kÞ for n leaves and k
genes. Due to space limitations, we present the full details for
this algorithm in the Supplementary Appendix, Section S2.

2.5 Experimental setup
2.5.1 Overview

We performed a simulation study comparing CASTLES to
four other methods by estimating branch lengths on the fixed
true species tree topology. We report error measured as the
absolute error averaged over all branches of each tree. Since
absolute error hides the contribution of bias versus variance,
we also report the mean error (without absolute), which is a
valid measure of the bias of a method. Since the mean abso-
lute error emphasizes long branches more than short
branches, we also report two metrics that emphasize shorter
branches successively more: root mean squared error (RMSE)
and mean absolute log error. For all the methods, negative
and zero branch lengths are replaced with 10�6 (the pseudo-
count used by RAxML for identical sequences). Since negative
lengths are not usable in downstream analyses, this step emu-
lates practice.

We performed two experiments: The first, using a new sim-
ulated quartet dataset, is not meant to be realistic but to ex-
amine accuracy under idealized conditions and to show the
impact of successively more challenging models of rate varia-
tion and the level of ILS. The second experiment uses two pre-
viously published simulated datasets with larger (30-taxon
and 101-taxon) trees and more realistic settings, and exam-
ines the effect of gene tree estimation error (GTEE), the level
of ILS, rate heterogeneity and deviation from the molecular
clock, and the inclusion of an outgroup. Additional informa-
tion about the simulation are provided in Supplementary
Appendix, Section S3.

2.5.2 Datasets

To measure the accuracy, we need a species tree with SU
branch lengths. The leading simulation method (SimPhy,
Mallo et al. 2016) produces species trees in the unit of the
number of generations (si). However, SimPhy does select a
global substitution rate � and assigns a mutation rate multi-
plier (ri) to each species tree branch (-hs option); setting �i ¼
ri � � matches with the assumed model. Thus, the SU lengths
on the species tree can be easily defined as ti ¼ si � �i.
Unfortunately, SimPhy does not output the ri rates; we modi-
fied its code to output these and the species tree with SU
lengths. We used this modified version of SimPhy to regener-
ate species trees used in our datasets mentioned below and
confirmed that the same trees are generated. This procedure
gives us the ground truth SU lengths. We use SimPhy to evolve
gene trees within each model species tree under the MSC,
which allows us to explore the impact of ILS on branch length
estimation. We quantify the level of ILS using the “Average
Distance” (AD) between true species trees and true gene trees,
in terms of the normalized Robinson–Foulds (RF) (Robinson

and Foulds 1981) distance, producing values that can range
from 0% (no discordance) to 100% (no shared branches).

Quartet dataset. We generated a new quartet dataset using
the modified version of SimPhy. We created six different
model conditions by changing the level of ILS (by varying
population size) and varying rate heterogeneity multipliers.
Our model conditions start from a strict molecular clock with
no rate variation (i.e. Homogeneous) and becomes succes-
sively more complex. Next, we add rate variations across spe-
cies tree branches only (-hs option), creating a model (Sp)
akin to MSC þ Substitution mentioned earlier. We then cre-
ate models that have rate variation only across genes but not
species (Loc using -hl) and both across species and across
genes (Sp, Loc using -hs -hl). Finally, we add rate variations
specific to each branch of each gene tree (Sp, Loc, Sp/Loc: -
hs -hl -hg), which creates heterotachy; this most complex
model is how Simphy is usually used (e.g. in the next datasets)
and goes beyond our theoretical model. The first five condi-
tions have an AD¼ 0.29, indicating a moderate level of ILS.
The final condition increases the ILS level to 0.51 AD. Each
model condition has 200 replicates, each with 10,000 true
gene trees. We intentionally used a large number of true gene
trees to verify our formulas and compare methods in an ideal
situation. Further details and parameters are provided in
Supplementary Tables S5 and S6.

S100 dataset. We used a 101-taxon simulated dataset from
Zhang et al. (2018) (100 ingroup and one outgroup), that
had model conditions characterized by different levels of
GTEE, ranging from 0 (for true gene trees) to 0.55, measured
in terms of the RF distance between true and estimated gene
trees. The ILS level changes dramatically across replicates (av-
erage: 0.46 AD). The estimated gene trees were created using
FastTree2 (Price et al. 2010). These datasets had 50 replicates,
each with 1000 gene trees.

MVRoot dataset. We used a 30-taxon dataset from Mai
et al. (2017) that had model conditions that varied in terms of
deviation from the molecular clock and inclusion of an out-
group. Deviation from the clock was specified with the pa-
rameter a of the gamma distribution, choosing 0.15 (High
variation), 1.5 (Med), or 5 (Low). This dataset had 100 repli-
cates with 500 gene trees (estimated using FastTree2) in each
replicate. The replicates were highly heterogeneous in terms
of ILS and GTEE level (average 0.46 AD and 0.38 GTEE
across all model conditions).

2.5.3 Methods compared

We compare CASTLES to four other methods: concatenation
using maximum likelihood, FastME (Lefort et al. 2015) on
two different distance matrices, and ERaBLE (Binet et al.
2016):

• Concatenation with maximum likelihood using RAxML
(Stamatakis 2014) is perhaps the dominant method used
in the literature, and estimates branch lengths on the given
species trees assuming all the sites in the concatenated
alignment evolve down a single model tree.

• FastME (Lefort et al. 2015) can estimate branch lengths
using the balanced minimum evolution criterion given a
distance matrix. We use it with two distance matrices.
First, we compute the patristic (path-length) distance be-
tween pairs of taxa for each gene tree using Dendropy
(Sukumaran and Holder 2010). Genes with no signal (all
branch lengths zero) are excluded. We then take either the
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average or the minimum for each pair across genes. In the
absence of rate heterogeneity, the minimum is appropriate
and has been used in GLASS and its variants (Mossel and
Roch 2010).

• ERaBLE (Binet et al. 2016) is specifically designed for
branch-length estimation from a set of gene trees and is
similar to FastME but uses weighted means.

3 Results
3.1 Quartet simulations

When considering all conditions, CASTLES has the best accu-
racy overall (Fig. 2a). Patristic(MIN) þ FastME has the lowest
error in conditions with no rate heterogeneity across loci. As
soon as rate heterogeneity across loci is added (i.e. Loc), it
goes from being the best method to being the worst. As
expected, the error for all methods tends to increase as the
models become more challenging (i.e. more rate variation or
higher ILS). In the penultimate condition with default ILS and
all sources of rate variation, CASTLES has substantially lower
error than alternatives. When ILS is increased, we observe a
huge increase in error for ERaBLE and Patristic(AVG) þ
FastME, but not for Patristic(MIN) þ FastME. Since the
mean absolute error emphasizes long branches more than
short branches, we also examine RMSE and log error
(Supplementary Fig. S11). The trends with these metrics are
very similar to mean absolute error, except that with the log
error (emphasizing short branches and long branches alike),
Patristic(MIN) þ FastME is far worse than the other methods
in conditions with rate variation across loci.

Switching from accuracy to bias, we observe little or no
bias for CASTLES for terminal branches in all conditions ex-
cept at the highest ILS level (Fig. 2b and Supplementary Fig.
S12). In contrast, ERaBLE and Patristic(AVG) þ FastME,
have a clear over-estimation bias for terminal branches, and
Patristic(MIN) þ FastME has a clear underestimation bias
(for all branches), except in the absence of rate variation
across genes (signified by Loc). Terminal branches seem par-
ticularly biased in the condition with the highest rate variation
and the highest level of ILS. In this condition, while CASTLES
does seem to have some bias for terminal branches, it is far
less biased than alternative methods. Comparing the last two
conditions, we observe that higher ILS has a larger impact on
bias than rate variation. In contrast to terminal branches, for
internal branches, ERaBLE and Patristic(AVG) þ FastME
also have low bias (slightly lower than CASTLES).

3.2 101-taxon ILS simulations

On this dataset, CASTLES has the best accuracy across all
model conditions, followed by Patristic(AVG) þ FastME and
ERaBLE, which are very similar to each other (Fig. 3b).
Concat þ RAxML has substantially higher errors than these
three methods that use gene trees as input. However,
Patristic(MIN) þ FastME has the highest error in all condi-
tions. These patterns remain largely similar, according to the
RMSE and log error (Supplementary Fig. S14).

CASTLES shows no substantial bias for terminal branches
regardless of the level of gene tree error and a small bias for in-
ternal branches (Fig. 3 and Supplementary Fig. S13). This bias
is toward under-estimation for true gene trees and gradually
moves toward over-estimation as gene tree error increases. In
contrast to CASTLES, ERaBLE, Patristic(AVG) þ FastME,
and Concat þ RAxML have a large over-estimation bias for
terminal branches. ERaBLE and Patristic(AVG) þ FastME
have a negligible bias for internal branches. Concat þ RAxML
has the highest over-estimation bias and is the only method
with a substantial over-estimation bias for internal branches.
Patristic(MIN) þ FastME has a large under-estimation bias.
Similar to quartet simulations, all methods are less biased for
internal branches than terminal ones. Comparing conditions,
we observe that the level of gene tree error has a relatively
small impact on under/overestimation for all the methods
tested.

On this relatively large dataset, we also examine running
times and observe that CASTLES is substantially faster than
alternatives (Fig. 3c). Note that gene tree estimation running
time is not included for methods based on gene trees because
those are often inferred regardless of branch length estima-
tion. Concat þ RaxML becomes successively slower and uses
more memory (Supplementary Fig. S15) as the genes become
longer. In the most extreme case, CASTLES can be more than
an order of magnitude faster than Concat þ RAxML.

3.3 30-taxon MVRoot simulations

On the 30-taxon MVRoot datasets, we further evaluate the
impact of outgroups, deviation from the clock, and ILS level
(Fig. 4). Whether an outgroup is included and independent of
deviation from the clock, CASTLES has the lowest error
(Fig. 4a). On these datasets, CASTLES has no discernible
bias, ERaBLE, Patristic(AVG) þ FastME and Concat þ
RAxML have a bias toward over-estimation (see an example
replicate in Supplementary Fig. S19a), and Patristic(MIN) þ
FastME has a more severe bias toward under-estimation;
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outgroup inclusion and deviation from the clock impact the
bias of methods only marginally (Supplementary Fig. S16). For
all methods, including an outgroup leads to an increase in the
mean absolute error (Fig. 4a). Increasing deviation from the
clock does not substantially impact the accuracy of CASTLES
or other methods (Fig. 4 and Supplementary Fig. S16).

To compare across levels of ILS, we resort to the logarith-
mic error because true branch lengths correlate with ILS (i.e.
are shorter for higher ILS), and hence, the absolute error con-
fuses the interpretation of the impact of ILS. Across all ILS
levels (Fig. 4b), Patristic(MIN) þ FastME has very poor per-
formance in terms of log error and is not further discussed be-
low. With the lowest ILS, CASTLES and Concat þ RAxML
have very similar performance. As ILS increases, all methods
become less accurate, but CASTLES degrades in accuracy
slower than the rest of the methods and hence dominates the

other methods for accuracy, with ERaBLE in second place.
Concat þ RAxML matches CASTLES for the lowest ILS but
gradually moves to be the second least accurate of all methods
(only better than Patristic(MIN) þ FastME) at the highest ILS
level. In fact, Concat þ RAxML is substantially more sensitive
to ILS (R2 ¼ 0:57 Pearson correlation with AD;
Supplementary Fig. S17) than CASTLES (R2 ¼ 0:23).
Comparing the relative accuracy of methods as ILS changes
using the mean absolute error shows similar trends
(Supplementary Fig. S18) with one notable difference: Concat
þ RAxML is better than CASTLES at the lowest ILS level but
is worse in other conditions (just as with the log error).

3.4 Mammalian biological dataset

We apply CASTLES and Concat þ RAxML on the 37-taxon
mammalian dataset of Song et al. (2012) (perhaps the first pa-
per that used concatenation to estimate branch lengths on a
species tree estimated using a summary method) after remov-
ing 23 mislabeled gene trees, retaining 424 genes
(Supplementary Fig. S19b). We observe patterns similar to the
simulated dataset. Branch lengths tend to be longer using
Concat þ RAxML than using CASTLES (Supplementary Fig.
S20). For example, primates are roughly twice as distant from
the root of placental mammals in the Concat þ RAxML tree
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Figure 4. 30-taxon MVRoot dataset. (a) Mean absolute error of estimated

branch lengths on the 30-taxon MVRoot dataset, with or without an

outgroup and with different levels of deviation from a strict clock. The

number of genes is 500 and the results are shown across 100 replicates;

the y-axis is cut at 0.11, leaving 16 outliers out of the graph (one from

CASTLES). (b) Focusing on cases without outgroups, we divide replicates

based on their level of true gene tree discordance due to ILS into four

groups. We show mean log error to control for the correlation between

ILS and branch length. Patristic(MIN) þ FastME has mean log error above

2 (see Supplementary Fig. S18) and is excluded.
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as they are in the CASTLES tree. While the two trees are simi-
lar in their longest branches and have similar diameters (i.e.
from rat to platypus), many of the other internal branches are
substantially shorter in CASTLES. While the truth is not
known on real data, we note that a similar pattern is observed
in simulations, and in simulations, Concat þ RAxML is bi-
ased toward over-estimation; in contrast, CASTLES is far less
biased (e.g. Supplementary Fig. S19a).

4 Discussion

Although CASTLES was almost universally more accurate
than the competing methods, comparisons across the experi-
ments revealed some interesting trends. Concatenation per-
formed well on low ILS cases and much worse with high ILS,
as expected. Increasing ILS did increase error for all methods
but also note that more ILS in our simulation is often (though
not always) accompanied by shorter branch lengths, which
are in general harder to estimate (Supplementary Figs S12 and
S13). However, the fact that concatenation degraded in accu-
racy faster than other methods as ILS increased confirmed
that it is less able to deal with gene tree discordance. Thus, the
current standard method (concatenation) does suffer from a
predictable shortcoming. CASTLES is meant to address that
shortcoming.

We observed that estimating terminal branches was harder
than internal branches across all datasets for all methods
other than CASTLES. As we expected, methods that ignore
coalescent (e.g. concatenation and FastME based on average
patristic distance) had a consistent overestimation bias. What
was surprising was that this overestimation showed its effects
more on terminal branches than internal branches. The rea-
sons for this clear trend are not clear to us.

Another consistent pattern was that including an outgroup
reduced accuracy for all methods and especially for
CASTLES. Outgroups are often connected via long branches
and have been found problematic for phylogenetic inference
and downstream analyses (Li et al. 2012). Our results suggest
that they can also confound SU branch length estimation.
While not surprising, this pattern suggests that unless the out-
group is needed for a downstream analysis, the outgroups
should be removed after rooting the species tree and before es-
timating branch length.

We surprisingly saw little impact caused by GTEE and devi-
ation from a clock. The robustness to deviation from the strict
clock can perhaps be explained by the fact that none of the
methods used here other than Patristic(MIN) þ FastME as-
sume a clock. Note that in CASTLES, even with our simplify-
ing assumptions, each branch is at the end assigned a different
mutation rate (the calculation of which assumes surrounding
branches have the same rate). The lack of sensitivity to per-
gene signal (controlled here by sequence length) is more sur-
prising, especially for the coalescent-based CASTLES. One
possibility is that while short sequences can affect the esti-
mated gene tree topologies, they have a more subdued effect
on distances within gene trees (Moshiri and Mirarab 2018);
thus, even given short sequences, estimated branch lengths
(which change in a continuous space) are broadly consistent
with true values, especially when averaged over genes. In con-
trast, CU branch lengths are sensitive to gene tree error, but
these are not used in CASTLES.

Our theory did not explicitly discuss rate heterogeneity
across genes. However, across-gene rate changes do not

impact our calculations under reasonable models of rate vari-
ation. Assume that each gene tree is scaled up or down by a
constant factor drawn i.i.d. from some rate multiplier distri-
bution with expected value one and independently from the
MSC process. Under any such model, all the derived expected
values remain intact and hence the method remains valid. It is
easy to see the same is not true for GLASS-like distances that
involve taking the minimum across genes: they only work if
all the genes have equal rates. When rates of evolution of
genes are allowed to vary, as the number of genes goes to in-
finity, all estimated branch lengths go to zero; a pattern that
would imply under-estimation bias, as we observed in our
data. More broadly, if rate changes are not i.i.d and correlate
with other factors such as missing data, accounting for them
becomes far more difficult.

Finally, we note that the estimation of terminal branches in
CASTLES is sensitive to rooting of the species tree; hence,
care must be applied in rooting the species tree before running
CASTLES. When an outgroup is not available, the species
tree root is identifiable under the MSC and can be inferred us-
ing QR-STAR (Tabatabaee et al. 2022a,b) in a statistically
consistent manner. Alternative methods such as tripVote (Mai
and Mirarab 2022) or methods that assume a strict molecular
clock (e.g. midpoint rooting) are also available, though they
do not enjoy the same theoretical guarantees.

5 Conclusion

We proposed CASTLES, a method for estimating branch
lengths of a given species tree using gene tree branch lengths.
CASTLES uses derivations made under the MSC model to de-
sign a set of coalescent-based equations that correct for the
fact that under the MSC, gene trees can be substantially lon-
ger than the species tree. Our study provided evidence that
CASTLES produces highly accurate branch lengths in substi-
tution units (SUs), improving on prior methods under a wide
range of model conditions.

There are several directions for future work. For example,
the derivation of CASTLES assumed that the input gene trees
differed from the species tree due to ILS alone. This work
could be extended to the case where genes evolve within the
species tree due to gene duplication and loss as well as ILS.
Developing methods for branch length estimation in that con-
text could be potentially enabled through the DISCO
(Willson et al. 2022) technique, which replaces every gene
family tree by a set of single-copy gene trees, which could
then be passed to CASTLES for branch length estimation on
the given species tree. A related question left for future work
is whether CASTLES is robust to the presence of horizontal
transfer or gene flow. Finally, the behavior of the method
should be tested when inputs have low taxon occupancy
across genes.

Another question of interest is whether CASTLES is a sta-
tistically consistent estimator of SU branch lengths. Given
that CASTLES is coalescent-based and that we use expected
values under the model, we consider this likely, but two tech-
nical challenges need to be addressed. First, for the method to
be consistent, we need the model to be identifiable, and we
did not establish identifiability in this article. Thus, we ask: Is
it possible to design different sets of mutation rates and CU
lengths that lead to the same patterns of gene tree distribu-
tion? If not, are the expected values enough to uniquely iden-
tify branch lengths or are higher moments necessary?
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Moreover, while we had a system of equations that could be
optimized directly, we opted for a more stable approach that
had several simplifications. It is possible (and perhaps likely)
that those simplifications could result in inconsistent branch
length estimation. These questions will need to be addressed
in future work, and may require that we explore a more com-
plex estimation scheme that does not rely on simplifications.
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Supplementary data are available at Bioinformatics online.
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